Stochastic stability behaviors analysis in a nonlinear harmful algal model 赤潮藻類模型的非線性隨機(jī)穩(wěn)定性研究
Stochastic stability is of crucial importance in all kinds of stochastic models . such investigation involves finding criteria of all kinds of convergence rates 隨機(jī)穩(wěn)定性是各種隨機(jī)模型中至關(guān)重要的問題,隨機(jī)穩(wěn)定性中的關(guān)鍵問題是找出各種收斂速度的判定準(zhǔn)則。
By using the theory of stochastic stability and poisson process with time varying density , the sufficient condition for keeping the mean square asymptotically stability of systems is proved 利用隨機(jī)穩(wěn)定性理論和帶時(shí)倚強(qiáng)度泊松過程相關(guān)原理,進(jìn)一步證明了系統(tǒng)保持均方漸近穩(wěn)定的充分條件。
The random analysis of 4ws is focused on stochastic stability , especially in stochastic bifurcation . the results have both theoretical and application significance 汽車四輪轉(zhuǎn)向系統(tǒng)的隨機(jī)振動(dòng)分析的側(cè)重點(diǎn)在于隨機(jī)穩(wěn)定性的分析,特別是在隨機(jī)分岔的分析方面,具有重要的理論和實(shí)際意義。
The evaluation method of element in state transition matrix is given when the wrong order of data packet is considered . considering the wrong order of data packets , the mathematic model of networked control systems with long time delay is developed . the sufficient and necessary conditions for stochastic stability of such networked control systems with long time delay are given 分析了長(zhǎng)時(shí)延網(wǎng)絡(luò)控制系統(tǒng)的二階矩穩(wěn)定性和隨機(jī)穩(wěn)定性;針對(duì)網(wǎng)絡(luò)傳輸中的數(shù)據(jù)包的時(shí)序錯(cuò)亂問題,提出了第二緩沖器的方法;分析了網(wǎng)絡(luò)誘導(dǎo)時(shí)延的markov特性,并給出了時(shí)延markov鏈的狀態(tài)轉(zhuǎn)移矩陣中元素的求取方法;建立了存在數(shù)據(jù)包時(shí)序錯(cuò)亂時(shí)長(zhǎng)時(shí)延ncs的數(shù)學(xué)模型,并給出了對(duì)應(yīng)的長(zhǎng)時(shí)延ncs隨機(jī)穩(wěn)定的充分必要條件。